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Kondo peaks and dips in the differential conductance of a multi-lead quantum dot:
Dependence on bias conditions
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We study the differential conductance in the Kondo regime of a quantum dot coupled to multiple leads.
When the bias is applied symmetrically on two of the leads (V and —V, as usual in experiments) while the
others are grounded, the conductance through the biased leads always shows the expected enhancement at zero
bias. However, under asymmetrically applied bias (V and AV, with X\ >0), a suppression—dip—appears in the
differential conductance if the asymmetry coefficient N is beyond a given threshold A= J1+r determined by
the ratio r of the dot-lead couplings. This is a recipe to determine experimentally this ratio which is important
for the quantum-dot devices. This finding is a direct result of the Keldysh transport formalism. For the
illustration we use a many-lead Anderson Hamiltonian, the Green’s functions being calculated in the Lacroix
approximation, which is generalized to the case of nonequilibrium.
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I. INTRODUCTION

The observation of the Kondo effect in quantum dots al-
lows a direct insight on this interesting many-body effect,
whose experimental fingerprint is the enhanced differential
conductance at zero bias which is a specific type of zero-bias
anomaly. The great advantage over the bulk Kondo effect is
of course the possibility to control the parameters like, for
instance, the coupling with the leads. Next, it was shown that
even more information can be extracted if the dot is con-
nected to three leads. The three lead-Kondo problem was
theoretically considered before in, e.g., Refs. 1-3, and ex-
perimentally realized by Leturcq et al.*> The third lead was
used to read the nonequilibrium density of states (DOS) in-
duced by the other two leads. Shah and Rosch?® analyzed the
influence of the coupling and bias on the decoherence rate.

In this Brief Report, we also study the many-lead quan-
tum dots in the Kondo regime, but the focus is different: we
are interested to find out the conditions under which the dif-
ferential conductance can show a suppression at zero bias
instead of the usual enhancement. There are well-known ex-
amples of transport properties influenced by dips in the spec-
tral function produced by Coulomb interactions. The first one
was the Coulomb pseudogap in the impurity conduction of
doped semiconductors resulting in the 72 dependence of
the hopping conductivity.® Then, a zero-bias anomaly mani-
fested as a dip in the tunneling DOS was studied in tunnel
junctions.” However, what is conspicuous for the three-lead
quantum dots (see sketch in Fig. 2) is that a peak-dip cross-
over may appear in the differential conductance while keep-
ing the dot permanently in the Kondo regime. As we show in
Sec. II, this occurs when the bias is applied asymmetrically
on the left and right leads, and the crossover is triggered by
the degree of asymmetry. For the sake of definiteness, let us
assume that for some voltage configuration (see sketch in
Fig. 2) the left lead receives electrons from the central lead
and pumps electrons into the right lead, the difference of the
two contributions being the total current. For the conduc-
tances, one can write G;=G;c+G,x=G;c—|Gx|.- Both G,
and |G, x| must decay by applying a voltage V (as the voltage
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destroys the Kondo resonance and reduces the electronic tun-
neling between leads) but not necessarily with the same de-
rivative; then, if dG,/dV>d|G,|/dV the conductance G,
will increase with V, giving rise to a dip about V=0.

It will also be shown that the peak-dip crossover can be
used to determine the ratio between the couplings of differ-
ent leads to the dot, and therefore it is of potential experi-
mental use.

The main conclusions of this Brief Report are extracted
from the current formula given by the Keldysh formalism
[Eq. (1)] by taking advantage of a simple connection be-
tween the convexity of the conductance dI/dV and the con-
vexity of the density of states. Recently, in the first two-
channel Kondo experiment,® a dip generated by the
competition between channels was observed in the differen-
tial conductance even in the case of symmetrically applied
bias. One may note that in our calculations, as in the men-
tioned (theoretical and experimental) papers referring to the
three-lead problem,'33 the setup and physics are different,
and therefore the results are outside the multichannel Kondo
phenomenology. For the illustration of the results, we shall
give also some numerical calculations using the equation of
motion solution for the Anderson Hamiltonian,’ generalized
to the multi-lead and nonequilibrium case.

II. PEAK-DIP CROSSOVER IN DIFFERENTIAL
CONDUCTANCE: ANALYTICAL ANALYSIS

In order to calculate the electron current through the lead
a one can use the Keldysh formalism and obtain'

4eA, (7
I,=- = Im G A -
@ ThA J_w m dd(w),ega) ,e[f(w He)

- flo- ppldo, 21,=0, (1)

where A, is the coupling of the lead « to the dot, A=>A,
and f(w—pu,) is the Fermi distribution in the « lead. G, is
the retarded Green’s function of the dot in the presence of the
leads. We remind that, usually, the Keldysh formalism needs
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FIG. 1. The dot density of states for the case of symmetrically
applied bias (A=-1). The three Kondo peaks correspond to the
chemical potentials in the three leads. Notice that the side peaks are
different in height. The parameters are V=0.01, €;,=-0.12, Ap
=A;=0.01, Ar=0.02, Ac/A;=2, and Ar=A;=0.01. The tempera-
ture is T=Tg/10 and Tx=3.2X 1074,

also the “lesser” Green’s function, but when the leads are all
connected in the same site, the lesser function can be elimi-
nated (except for the case of magnetic leads'’). It was re-
cently proven that the same simplification occurs for a sym-
metric many-site system.!!

In this Brief Report we are interested in the behavior of
the conductance close to equilibrium for the case when two
of the leads are biased and the others are grounded. In this
case, all the grounded leads have the same chemical potential
(set to zero) and act like a single reservoir; this reservoir will
be called “central lead” (with the chemical potential V-=0).
If we apply the potential V; =V on the left lead L and the
potential Vx=AV on the right lead R, then the differential
conductance through the lead L can be calculated from Eq.

(0,

dl,  4eé*A, [~ df(w—eV
6= Gk =25 J [(AR +agim Gy L=
— Ay Im Gdd(w)M}dw. 2)
dw

Notice that only the derivative of the Fermi function was
considered while the derivative of Im G,; versus bias was
neglected, which was proven to be a very good approxima-
tion in Ref. 1. At low temperatures, when the derivatives of
the Fermi functions approximate delta functions, the above
formula turns into

4e*A
Gu(V) == —=F(Ag+ Ag)lm GyieV) = Mg Im GalheV)]
(3)
and similarly
dl 4e*A
Gr(V) === FIMAL + A)Im GygheV)
- AL Im Gdd(€V)], (4)
dl 4e%A
Ge(V) === = A Im GyyleV)

The conductance G, ¢ ¢, defined in this way is a quantity that
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can be measured experimentally and helps for determining
the coupling ratios as we shall see below.

We suggest now a way to search for Kondo dips in the
differential conductance. One has to compute the second de-
rivative of G, g ¢ for V=0 which contains the convexity in-
formation (in case the first derivative vanishes, the convexity
determines if one has a peak or a dip). The second derivative
of the differential conductance can be expressed as

oy AN A [( Ac) 3]
Gj(0)=- A Im GJ,(0) | 1 + A, -\, (6)
" _ 4ez‘ALAR " |:( AC) 3 :|
GR(O) =- —A Im Gdd(o) 1+ _AR =11, (7)
" _ 4E4ACAR ” |: AL 3:|
Ge(0) = =S m GO T4 0| (8)

In the above formulas, —Im G/,(0) is the second derivative
of the spectral function at equilibrium (i.e., for V=0) and is
always negative for T<<Ty indicating the presence of the
Kondo peak in the density of states. This property will be
used to determine the peak or dip behavior of the conduc-
tance.

The distribution (and sign) of the conductances in the
three-lead device is controlled by the coupling to the ground
lead Ac. In the mentioned experiments,*> when the aim was
to read the nonequilibrium DOS, A is very small compared
to the other couplings; in this case the currents L and R have
always opposite signs, the same being true for the second
derivatives [Egs. (6) and (7)]; the conclusion is that both
conductances are maximum in module at zero bias. How-
ever, for large coupling A, the above formulas indicate the
possibility of a more complex behavior of the conductance.

We identify first the case A=—1 as being the one com-
monly used, with the gate potentials symmetrically applied.
In Eq. (6), the straight parenthesis on the right-hand side is
always positive for negative N\, so one may conclude that
G;(0) has the same sign as —Im G’,(0), which is negative,
indicating a peak also in the differential conductance G;. For
negative \, it turns out from Egs. (3) and (4) that G, >0 and
Gr <0, meaning that the left and right currents flow in op-
posite directions. Then the above argument holds for the
module of G, which is also maximum at zero bias.

Interestingly, for A;=Ay and A=-1, G is not zero as a
consequence of the spectral asymmetry Im Gg(eV)
#Im Gyy(—eV) [see Eq. (5) and also notice the different
heights of the side peaks in Fig. 1]. The same nonzero value
of the current through the grounded lead was discussed in
Ref. 12 for the sequential tunneling case and attributed to the
electron-hole asymmetry. Under the above-mentioned condi-
tions G¢(V=0)=0 indicating a saddle point. In this case, the
conductance through the central lead does not show a peak
shape, being instead antisymmetrical about V=0.

A different situation occurs in the case A > 0. It is obvious
that, without loss of generality, we may consider actually A
=1 meaning that, by convention, the smaller bias is applied
on the left lead. One may now conclude from Eq. (6) that the
peak-dip behavior in the left lead is completely determined
by the sign of (1+Ac/Ag)—\>. This result may be of poten-
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FIG. 2. Sketch of a quantum dot connected to three leads, with
the bias asymmetrically applied on the left and right leads (V and
AV, with A=1/1.4/1.58/1.8/2.5). (a) The differential conductance
through the left lead changes from peak to dip (around zero bias).
The value of the asymmetry parameter A where the crossover hap-
pens is Ag=v1+A-/A;=1.58. [(b) and (c)] Differential conduc-
tance through the right and central leads show a Kondo peak be-
havior being maximum in module at V=0. The other parameters:
Ar=A;=0.075, Ac/A;=3, €,=-0.12, T=Tx/10, and Tg=3.2
X 1074,

tial interest for experimentalists. In particular, if one finds the
crossover value Ng=31+A/Ag (when the peak changes into
a dip), the ratio A-/Ag can be immediately extracted. The
mentioned coupling ratio is otherwise inaccessible to direct
measurement. Such a peak-dip crossover can be seen in Fig.
2(a). The numerical plot (see below calculation details) indi-
cates that the dip is considerably narrower than the Kondo
temperature and is situated in the middle of a larger peak.
This means that even if the conductance through the left lead
initially increases, it will eventually start to decrease for a
larger bias. It is an expected behavior since for large biases
all Kondo correlations are killed and all the conductances
approach the (much lower) non-Kondo limit.
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The conductances through the right and central leads have
the usual peak behavior [see Figs. 2(b) and 2(c)]. One has to
pay attention to the fact that the conductance through the
central lead is negative due to the sign convention regarding
the currents direction, but it is maximum in module at zero
bias and should be considered as a Kondo peak.

We stress that formulas (6)—(8) are quite general and also
hold outside the Kondo regime (for high temperatures or
weak couplings), but in this case they are not very insightful.
The variation in the differential conductance is very smooth
outside the Kondo regime, and it is difficult to determine its
convexity unambiguously.

III. APPLICATION: NUMERICAL RESULTS FOR THE
MULTI-LEAD ANDERSON MODEL

In order to illustrate the results, we shall calculate the
differential conductance for the multi-lead Anderson model:

H= E did, + Udldd]d| + 2 €€} aoCrar

a N

+ > Voleh od,+He), (9)

a.k,o

where €, is the energy of the dot level, U is the Coulomb
repulsion, and, for instance, ¢, annihilates an electron with
momentum k and spin o in the a lead. The last term de-
scribes the coupling between the dot and leads. The quantity
needed in the current formula (1) is the dot retarded Green’s
function Gdd,(,:«d(,,dj,», which will be calculated in the
Lacroix approach.” We write the equation of motion for the
Green’s function and perform a decoupling approximation at
the third step in order to close the system of equations. In our
case, we consider three leads (reservoirs) instead of one as in
Ref. 9, the generalization being straightforward. The result-
ing formula, in the U—o° limit, reads as

<nd> E <d Cka—o'>

Gdd,a'(w + l()) =

Since we work in a nonmagnetic case, the subscript o can
be omitted in the Green’s-function notation. It comes now
into question how to treat the averages of the type

- w — € (10)
n .
w— E() - E 2 V V qa—a kﬁ_ > E 2 <d—0'cka—0'>
ka 7 €&  kgap ~ €k ka = €
I
<C;a—o-ckﬁ—0'> == (1/27T)f [fa(w) +fﬁ((‘))]
XIm((ckﬁ_Uc;a_o))dw. (12)

(c;a_ockﬁ_(), for instance, where the two operators refer to
electrons in different leads. For equilibrium, when all the
Fermi levels are equal, one can use the fluctuation-
dissipation theorem which relates the average to the corre-
sponding Green’s function,

(ChamaCip-o) == i f floNtm{(exg-o€g0-Pdw. (1)

In nonequilibrium, the Fermi functions f, are different in the
three leads a=L,R,C, and for the calculation of the men-
tioned average we propose

In the calculations there also appear averages of type
(d" craeey SO that a distribution function on the dot is also
needed. For the dot we shall use the weighted mean f,
=>,A,f./A. This intuitive expression of f; has been used in,
e.g., Refs. 13 and 14, and we have checked that the present
results, i.e., existence of the dip and its temperature depen-
dence, are stable with respect to different ways to introduce
the nonequilibrium.
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FIG. 3. Evolution of the Kondo dip with temperature: A=2; the
other parameters as in Fig. 2

These nonequilibrium aspects being settled, we continue
along the Lacroix line, and with the definitions A=3A,
2

. Va i 2 Ay G )f (@)
:sz a;f)zé’i): %Eava, Aa:—?fmdw’, and B,
= ) a‘)f'_—:’_iodw’ (where D is the half-bandwidth and is taken
as energy unit) the following expression is obtained:
n s .
1- % +Gyw+i0)>, B,
Gdd(w + lO) = 2

w-Ey+id+ > B, + G (w+i0)2iA>, B,

(13)

In getting this expression we use the approximation A,
~-G},B,, which was proposed first by Lacroix’ for the
Kondo regime and later used also in Refs. 11 and 15. Equa-
tion (13) can be easily solved. First, one conjugates the equa-
tion, and after that G)(w+i0) is replaced in the initial for-
mula to obtain a simple algebraic second degree equation for
G, (w+i0), only one of the solutions being physical. The so-
lution is analytic but is not included here because it is
lengthy. It is important to mention that this solution of the
EOM allows us to address the low-temperature regime (T
<Tg), which is not possible with the more simple decou-
pling scheme in Ref. 2.

Figure 3 shows that the Kondo-type temperature depen-
dence of the conductance (i.e., decrease in with increasing
temperature) occurs in the range eV/ Tk €[-0.5,0.5] (T} be-
ing calculated as in Ref. 16). This range is in fact dependent
on A, and we checked that it becomes narrower when A
increases.

One can also notice that the width of the dip increases
with the temperature. Actually the temperature dependence
of the conductance comes from the spectral function
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FIG. 4. (Color online) The dip width scaled with temperature as
a function of the asymmetry parameter N for three different tem-
peratures below Tg. The linear temperature dependence is obvious
for N=2.4, where the three scaled curves coincide. The dip van-

ishes at Ay=1.58 which can be obtained by extrapolation.

Im G,,(V=0,T). Let us define the width of the dip w(\,T) as
the distance between the two peaks. By scaling the width
with temperature the data from Fig. 3 generates Fig. 4 which
shows that, for not too large values of the parameter A\, the
width behaves like

w\T) = fO)T,  with f(A=\g) =0. (14)

For A close to A\ the error in the calculation of the dip width
becomes large, and we suggest a numerical fit to obtain the
dip-peak crossover point A(. The polynomial fit gives a value
of \( very close to the exact result Ay=1.58.

IV. CONCLUSIONS

In conclusion, we have studied the nonequilibrium trans-
port through a quantum dot connected to three reservoirs. In
the Kondo regime, if the potentials are applied asymmetri-
cally on the leads (i.e., Vxg=AV,, V=0, and A=1) a peak-
dip crossover of the differential conductance occurs in the
left lead at zero bias. The proof is based on the connection
between the convexity of the differential conductance and
the convexity of the density of states at V=0 and is indepen-
dent of the Hamiltonian model. The ratios of the lead-dot
couplings (A;/Aq-,Ag/Ap) can be obtained if the crossover
value A is determined experimentally.
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